
	

Continue

https://drafthe.ru/uplcv?utm_term=secure+software+development+life+cycle


Secure	software	development	life	cycle

Technical	Writer,	Web	Security	Expert	and	Software	consultant.Avoid	making	common	security	mistakes	that	make	your	software	vulnerable	to	attack.	As	a	developer,	you’re	certainly	aware	of	the	importance	of	following	security	best	practices.	But	many	times,	we	miss	certain	things,	maybe	because	it	hasn’t	become	second	nature	to	us	yet.
Unfortunately,	we	realize	only	after	a	security	issue	has	arisen,	and	it’s	marked	on	our	brains	like	a	spot	of	indelible	ink.Many	instances	of	poor	security	practices	come	to	the	surface	when	it’s	too	late.	Many	mistakes	are	made	even	by	large	organizations	and	experienced	developers.	Here,	we’d	like	to	cover	some	common	steps	which	will	prove
helpful	in	enhancing	your	software	security.1.	Instead	of	Using	Encryption,	Hash	the	PasswordsSometimes	developers	use	encryption	to	store	passwords.	Due	to	this,	there’s	always	a	chance	of	someone	finding	the	decryption	algorithm	or	key.	To	avoid	this,	use	hashing,	as	it	doesn’t	have	a	direct	reverse.	This	means	no	one	can	reverse	it	unless	they
already	have	a	mapped	table	from	plain	text	to	hash.2.	Avoid	Adding	Secret	Backdoors	in	SoftwareWhether	you	have	a	genuine	reason	or	not,	don’t	add	backdoors	to	access	software.	It’s	best	to	avoid	putting	backdoor	access	into	the	system.	Because	sooner	or	later	someone	else	may	find	it.	Exploiting	backdoors	is	a	common	tactic	used	by	cyber
attackers.	Adding	backdoors	can	damage	the	reputation	of	your	organization	and	portray	you	as	a	bad	guy	who’s	enabling	stealing	personal	data	of	users,	adding	malware,	or	hijacking	devices.3.	Make	Sure	to	Require	User	Authentication	on	Every	PageSometimes	it’s	easy	to	accidentally	skip	essential	steps	for	software	security.	One	common	issue	is
not	requiring	authentication	on	every	page.	For	instance,	a	copied	URL	with	confidential	information	(such	as	a	confirmation	page)	can	be	opened	into	another	browser	without	providing	login	details.	This	shouldn’t	be	the	case—be	sure	to	ask	for	login	details	instead	of	showing	the	page	directly.4.	Have	a	Plan	For	Security	PatchingAs	a	software
developer,	it’s	your	responsibility	to	keep	your	software	updated	and	free	from	any	vulnerabilities	by	providing	regular	updates	and	patches	for	your	software.	Be	sure	that	critical	security	issues	are	patched	quickly,	before	attackers	can	take	advantage.5.	Test	Before	Publishing	Your	SoftwareOften	security	loopholes	in	software	are	found	through
testing.	That’s	why	it’s	important	to	follow	proper	testing	practices	before	publishing	any	software—no	matter	whether	it’s	a	simple	or	a	complex	application.	More	testing	(such	as	checking	the	performance	on	different	platforms,	testing	any	input	conditions,	etc.)	will	help	you	in	providing	software	security	before	problems	occur.6.	Use	a	Code
Signing	CertificateEven	if	your	software	is	well	developed	and	published,	its	reputation	is	what	decides	whether	it	will	become	successful	or	not.	To	increase	the	reputation,	sign	your	software	using	a	Code	Signing	Certificate	from	a	trusted	Certificate	Authority.	This	will	help	you	in	many	ways:avoid	security	warning	signs	for	unsigned
softwaredemonstrate	the	trustworthiness	of	your	softwareprove	the	integrity	of	the	softwareboost	the	confidence	of	your	usersPreviously	published	at	Hacker	Noon	Create	your	free	account	to	unlock	your	custom	reading	experience.	When	security	vulnerabilities	in	a	vendor's	software	are	exploited,	significant	costs	are	faced	by	the	vendor	and	its
software	users.	Software	with	security	vulnerabilities	harms	an	organization's	reputation	with	customers,	partners	and	investors.	It	increases	costs	as	companies	are	forced	to	repair	unreliable	applications,	and	it	delays	other	development	efforts	as	limited	resources	are	assigned	to	address	current	software	deficiencies.	With	the	increased	scrutiny	of
internal	processes	and	controls	resulting	from	mandates	such	as	the	Sarbanes-Oxley	Act,	executives	are	demanding	that	IT	improve	the	development	process	in	order	to	create	more	secure	and	reliable	software.	Fix	a	flawed	development	process	All	software	has	bugs,	and	a	large	number	of	these	bugs	have	security	implications.	It's	not	just	buggy
code	that	is	an	issue.	Software	behavior	and	coding	practices	that	were	considered	safe	at	the	time	of	writing	may	now	be	ripe	for	exploitation	by	malicious	hackers.	The	problem	for	software	development	organizations	is	that	they	must	simultaneously	reduce	software	vulnerabilities	while	keeping	operational	costs	in	check.	Plus,	any	new
development	strategy	is	expected	to	be	applicable	across	geographically	distributed	teams	--	including	offshore	service	providers.	Something	has	to	change.	Software	quality,	and	specifically	software	security,	must	be	improved,	and	the	most	effective	means	is	to	address	the	root	causes	of	poor	software	--	the	defects	in	the	source	code.	But	to	improve
software,	the	current	flawed	development	process	must	be	addressed.	Start	by	assessing	the	situation	Rather	than	throwing	more	money	and	resources	into	a	flawed	process,	companies	need	a	new	plan	of	action.	Before	implementing	new	processes	and	investing	in	new	tools,	companies	should	consider	these	steps:	Ensure	information	flow:	A	smart
software	development	process	ensures	timely	and	effective	information	sharing.	This	enhanced	knowledge	improves	communication	between	management	and	the	development	teams,	allows	developers	to	work	with	solid	and	secure	architecture	and	coding	practices,	provides	visibility	into	an	application's	context	and	its	health	at	any	point	in	the
development	life	cycle,	and	lets	IT	manage	software	assets	like	other	business	assets.	Know	the	goals:	A	key	consideration	for	any	software	security	initiative	is	whether	the	goal	is	to	audit	the	current	state	of	your	software's	security	or	to	implement	a	change	in	current	development	practices.	An	audit	is	a	one-time	event,	while	an	in-process
deployment	can	improve	the	security	of	existing	applications,	as	well	as	provide	the	necessary	experience,	tools	and	processes	to	extend	the	concept	of	secure	development	throughout	the	entire	development	organization.	Determine	strategies	for	new	and	existing	code:	Attempting	to	retrofit	secure	coding	practices	into	existing	code	can	lead	to
unforeseen	issues.	Often,	the	prudent	course	is	to	focus	efforts	on	cleaning	up	critical,	exploitable	problems.	In	contrast,	a	new	development	environment	offers	the	opportunity	to	implement	secure	coding	practices	right	from	the	beginning.	Understand	the	range	of	security	issues:	These	issues	include:	security	vulnerabilities	(problems	that	can	be
exploited	by	an	attacker)	and	security	flaws	(problems	that	may	exhibit	themselves	at	the	design	level);	security	symptoms	(theoretical	threats	that	indicate	a	potential	security	vulnerability);	and	security	weaknesses	(nonuniform	distribution	of	security	symptoms	and	vulnerabilities	in	a	given	software	system).	A	checklist	to	produce	high-quality,
secure	code	To	create	more-secure	code,	organizations	can	implement	a	six-step	strategy	that	combines	straightforward	processes	supported	by	multiple	technology	options.	The	steps	are	as	follows:	Conduct	a	software	audit.	An	audit	will	uncover	and	help	prioritize	existing	security	vulnerabilities	and	code	quality	issues.	Implement	a	"stop	the
bleeding"	plan.	The	plan,	accomplished	by	deploying	an	extensible,	rules-based	"quality/security	compiler,"	ensures	that	tactical	issues	are	addressed	and	enforces	proper	coding	practices	in	new	development.	Perform	a	more	detailed	in-process	audit.	The	in-depth	audit	looks	for	design	and	architecture	weaknesses	and	correlates	them	with	known
security	vulnerabilities.	The	findings	are	used	to	help	plan	a	strategic	road	map.	Convert	in-process	audit	findings	into	policy.	The	next	step	is	to	clean	up	"one-time	fixes"	and	update	a	rules-based	security	compiler	to	include	any	new	policy	requirements.	Measure	improvement.	To	gauge	the	initiative's	success,	it	is	imperative	to	monitor	the	trends
and	results	from	implementing	the	new	processes	and	tools.	Manage	iterations	of	improvements.	This	iterative	process	requires	repeating	Steps	3	through	5.	The	key	is	to	streamline	the	change	process	based	on	priorities,	starting	with	the	highest	priority	weaknesses.	Tools	and	techniques	to	support	improved	software	development	There	are	several
process	and	technology	options	available	to	support	the	implementation	of	this	checklist.	Organizations	should	invest	in	a	combination	of	them	to	achieve	the	best	results.	Use,	but	understand	the	limitations	of	black-box	testing.	When	addressing	software	security,	traditional	testing	approaches	fall	short.	While	black-box	testing	will	continue	to	play	an
important	role	in	identifying	and	removing	traditional,	functional	quality	issues,	it	should	not	be	the	only	tool	used.	Judiciously	employ	manual	code	reviews.	Rigorous	code	reviews	can	enable	detection	of	implementation-level	security	vulnerabilities	but	they	require	a	disciplined	methodology	in	order	to	obtain	results.	While	manual	code	reviews	are
helpful,	they	can	be	quite	costly	and	prone	to	human	error.	Use	automated	defect	detection	tools.	Static	analysis	tools	analyze	source	code	and	identify	coding	errors	that	can	lead	to	security	vulnerabilities.	These	tools	complement	traditional	testing	and	manual	code	reviews.	Conclusion	Traditional	software	development	is	failing	in	today's	globally
networked	environment.	Insecure	software	reduces	the	productivity	and	wastes	the	money	of	businesses,	and,	as	a	result,	harms	the	reputations	and	bottom	lines	of	software	producers.	While	an	improved	development	process	entails	investment,	it	can	be	incremental	and	highly	automated.	Just	as	an	efficient	manufacturing	process	can	provide	a
competitive	advantage,	high-quality	software	development	can	help	eliminate	costly	problems	and	improve	profits.	By	addressing	and	investing	in	fixing	the	software	security	issue	today,	development	companies	can	create	a	repeatable,	sustainable	approach	for	delivering	consistently	high-quality,	secure	code.	Djenana	Campara	is	the	founder	and
chief	technology	officer	of	Burlington,	Mass.-based	Klocwork	Inc.,	a	provider	of	static	analysis	software	that	detects	software	security	vulnerabilities	and	helps	improve	overall	software	quality.	Before	founding	Klocwork,	Campara	spent	11	years	at	Nortel	Networks,	advancing	from	senior	software	designer	and	team	leader	to	manager	and	system
architect.	At	Nortel,	Campara	and	her	team	developed	the	technology	that	ultimately	would	lead	to	the	founding	of	Klocwork.	She	has	been	awarded	three	U.S.	patents	for	her	software	development	work	in	creating	Klocwork	inSight,	and	has	two	patents	pending.	Copyright	©	2005	IDG	Communications,	Inc.	The	following	article	is	part	of	a	series	of
articles	about	our	NerdWallet	Internship	program.	Saswata	Gupta	shared	their	experience	as	an	software	engineer	intern.	If	you	are	curious	about	joining	NerdWallet	as	an	intern	or	full-time	employee,	please	apply	for	one	of	our	open	positions!	What	This	Is	About	I’ve	just	finished	up	with	my	internship	at	NerdWallet	as	a	security	engineer	and	I
couldn’t	help	but	realize	how	different	this	internship	was	compared	to	my	previous	five	internships.	That’s	not	to	say	my	previous	experiences	were	all	homogenous,	but	I	had	definitely	become	accustomed	to	a	pattern	of	work	that	I	didn’t	experience	during	these	past	few	months.	For	instance,	there	was	a	week	I	spent	where	I	hadn’t	written	a	single
line	of	code	which	was	crazy	to	me	at	the	time.	That’s	not	to	say	my	time	at	NerdWallet	was	tarnished,	but	actually,	the	opposite	since	my	goal	for	internships	is	to	get	a	wide	breadth	of	experiences.	I	wanted	to	understand	why	this	experience	felt	so	new	to	me.	The	obvious	conclusion	was	that	security	engineering	was	the	outlying	factor,	as	my
previous	experiences	were	more	software	development	related.	Putting	more	thought	into	it	led	me	to	understand	the	stark	differences	between	these	two	roles	in	the	tech	industry,	but	also	how	they	are	similar.	In	this	post,	I	hope	to	give	those	of	you	curious	about	these	domains	an	overview	of	both	and	how	they	compare.	What	They	Are	Security
Engineer:	Goal:	Ensure	that	existing	software	systems	cannot	be	exploited	and	private	data	cannot	be	accessed	by	attackers.	Domain	of	Expertise:	Methods	of	attack	hackers	can	exploit	and	how	to	mitigate	them.	Major	Types	of	Work:		Exploratory	work	–	combing	through	source	code	or	documentation	to	better	understand	a	system	and	thus	its
vulnerabilities.	Collaboratory	work	–	discussing	with	other	teams	/	third-party	vendors	about	how	the	system	behaves	and	how	it	could	be	vulnerable.	Design	work	–	constructing	a	solution	outline	to	patch	up	a	vulnerability	within	a	system	considering	all	of	its	effects.	Software	Developer:	Goal:	Create	new	software	systems	and/or	maintain	existing
systems	to	ensure	they	function	as	expected	and	are	performant.	Domain	of	Expertise:	What	an	effective	software	system	looks	like	and	how	to	maintain	that.	Major	Types	of	Work:		Feature	/	Project	work	–	creating	a	software	system	or	updating	one	through	programming.	Design	work	–	outlining	how	a	software	system	should	behave	with	all
functional	requirements	in	consideration.	Collaboratory	work	–	Discussion	with	regarding	behaviour	of	a	system	or	how	multiple	systems	may	interact.	What’s	Different	What	stood	out	to	me	while	on	the	job	as	the	biggest	difference	was	the	lack	of	programming,	and	in	a	broader	sense,	a	lack	of	structure	in	the	work	being	done.	As	a	developer,	it	is
much	easier	to	know	what	is	correct	/	what	works	and	what	isn’t	/	doesn’t.	As	a	security	engineer,	the	problems	being	solved	are	more	vague	in	the	sense	that	there	is	less	of	a	definitive	correct	answer.	An	example	of	this	is	the	main	project	I	worked	on	during	my	internship:	improve	input	validation	within	our	backend	code.	There	are	so	many	ways
input	validation	within	code	can	be	improved,	just	in	terms	of	which	libraries	are	used,	or	even	using	writing	our	own	libraries.	Aside	from	that,	there	are	many	other	factors	that	must	be	considered,	which	only	make	the	correct	solution	harder	to	identify	such	as	the	practicality	of	expecting	developers	to	code	the	input	validation	correctly	and	how	we
could	monitor	the	state	of	input	validation	to	assess	the	situation	and	confirm	our	solution	works.	What	Both	Share	Though	the	time	spent	on	types	of	work	done	may	be	different	between	the	roles,	it	wouldn’t	be	correct	to	say	that	any	of	the	types	of	work	listed	solely	belong	to	either	role.	I	can	confidently	say	that	doing	the	work	in	one	role	will
definitely	improve	the	quality	of	work	in	the	other,	as	the	type	of	work	and	the	domain	specific	knowledge	helps	towards	both	goals.	For	example,	if	a	security	engineer	is	well	aware	of	how	a	developer	writes	code	for	a	system,	it	is	much	easier	to	identify	its	behaviour	and	thus	vulnerabilities	as	well.	This	goes	in	the	other	direction	as	well,	as	a
developer	aware	of	common	security	flaws	can	write	more	secure	code.	Why	Both	Are	Valuable	Broadly	speaking,	security	engineers	tend	to	have	less	structured	work	and	place	an	emphasis	on	in-person	and	written	communication,	while	developers	are	focused	on	programming	and	designing	systems.	Both	are	necessary	for	a	successful	product,	and
both	have	skills	transferable	to	the	other.	The	only	conclusion	I	can	state	with	complete	confidence	is	that	I	gained	many	valuable	skills	during	my	internship	that	will	be	transferable	to	any	future	role	I	take	in	the	tech	field.

download	filmora	9	pro	mod	apk	for	pc	
18365594848.pdf	
13640988322.pdf	
how	much	does	it	cost	to	get	a	new	driver's	license	in	arkansas	
moving	background	for	ppt	free	download	
balarama	malayalam	pdf	download	
onenote	app	annotate	pdf	
31226507290.pdf	
16094d76458702---57196413353.pdf	
poemas	con	sus	caracteristicas	
1606d802fa2d76---97868301041.pdf	
how	long	does	it	take	to	cook	a	frozen	pizza	in	a	convection	oven	
assassin's	creed	identity	game	download	
pc	troubleshooting	jobs	
41062504057.pdf	
bleacher	report	week	9	nfl	predictions	
160708c88c0d7b---5389373257.pdf	
160983ed7a85a5---dubivaxekitutadisud.pdf	
puvesatifososogo.pdf	
watercolor	paper	texture	free	
16074576e8475e---zumefelinerexavaxab.pdf	
free	pdf	books	to	download	
42940049918.pdf	

http://esipro.fr/userfiles/file/xemaguxuxuzufanolidepav.pdf
http://flygarfield.net/userfiles/file/18365594848.pdf
https://laihouston.com/wp-content/plugins/super-forms/uploads/php/files/b91b5c2c9a58a65d49bbfc602d33ad14/13640988322.pdf
https://www.goldenplanet.dk/wp-content/plugins/formcraft/file-upload/server/content/files/160868876980e9---83658778967.pdf
https://cbolean.com/wp-content/plugins/super-forms/uploads/php/files/oekk2oqd080a09ue7mmfdv60n2/63695855360.pdf
http://massimoandyuethui.com/clients/69227/File/78999947062.pdf
http://barcelonasixtytwo.com/userfiles/file/pipexinebekubanejavak.pdf
http://mintaialuminum.com/d/files/31226507290.pdf
http://juniorsmagazine.com/wp-content/plugins/formcraft/file-upload/server/content/files/16094d76458702---57196413353.pdf
https://anzmrrn.org/wp-content/plugins/formcraft/file-upload/server/content/files/16071e8fdde22b---38630355389.pdf
http://gf-location.fr/wp-content/plugins/formcraft/file-upload/server/content/files/1606d802fa2d76---97868301041.pdf
http://artmetinc.com/wp-content/plugins/formcraft/file-upload/server/content/files/160a5eeba07f9f---vijarozesad.pdf
https://kitapkapla.com/upload/ckfinder/files/43138526054.pdf
http://www.fullertherapy.com/wp-content/plugins/formcraft/file-upload/server/content/files/16078990242271---vutibevepikuzuxupokowanu.pdf
https://www.audioclinica.pt/wp-content/plugins/super-forms/uploads/php/files/nr1tktfujiubu5vh7o9qgmqnqi/41062504057.pdf
https://www.frankreich-ferien.ch/wp-content/plugins/formcraft/file-upload/server/content/files/160a0251c53689---9674088023.pdf
http://yuseigachi.nl/wp-content/plugins/formcraft/file-upload/server/content/files/160708c88c0d7b---5389373257.pdf
http://www.dnevi-sekretarjev.eu/wp-content/plugins/formcraft/file-upload/server/content/files/160983ed7a85a5---dubivaxekitutadisud.pdf
https://lawpropertyconsultants.co.uk/wp-content/plugins/super-forms/uploads/php/files/09b93f1h4g19ut9cpvdk4cqof2/puvesatifososogo.pdf
https://maugli24.ru/wp-content/plugins/super-forms/uploads/php/files/fe94651e8f56ac28d7ae4cd7ccae237e/79227070917.pdf
http://osullivanspressurewashing.com/wp-content/plugins/formcraft/file-upload/server/content/files/16074576e8475e---zumefelinerexavaxab.pdf
http://lube-stc.com/ckfinder/userfiles/files/1605763083.pdf
http://sushiosushi.com/uploads/files/42940049918.pdf

