
	

Continue

https://feedproxy.google.com/~r/1eyvgo/aqOO/~3/BvfzZFkJO3s/uplcv?utm_term=find+permutations+of+a+string+java


Find	permutations	of	a	string	java

In	this	blog	we	are	going	to	find	out	all	the	permutations	of	a	given	string.	Like	always,	we	will	first	start	from	the	basics	–	Understand	what	is	a	permutation	of	a	string,	break	the	procedure	down	into	smaller	steps	and	understand	the	procedure	of	finding	out	one	permutation.	Finally,	we	will	write	code	in	Java	for	the	same.	Along	the	way,	I	will	also
be	explaining	each	line	code	and	show	you	pictorial	representations	of	the	code	execution	so	that	you	can	visualize	it	better.	What	is	a	permutation	?	Different	ways	of	arranging	a	set	of	items	is	permutation.	A	string	is	a	sequence	of	characters.	Permutation	of	a	string	is	arranging	the	characters	of	the	string	in	different	ways.	Let’s	take	an	example	to
understand	this.	Permutation	of	a	String	The	string	“ace”	can	be	arranged	as	“ace”,	“aec”,	“cae”,	“cea”,	“eac”,”eca”	–	different	arrangements	of	the	characters	a,c,e	which	make	the	string	“ace”.	Note	that	the	string	“ace”	is	of	length	3	and	we	get	6	different	permutations	of	the	same	–	3	factorial.	If	the	input	string	was	“aced”,	we	will	get	24
permutations	–	4	!	Observation	about	the	permutations	Did	you	notice	that	the	first	2	permutations	“ace”,	“aec”	have	a	as	the	first	letter	and	the	2	other	letters	are	then	concatenated	to	the	letter	a.	Extracting	the	first	character	‘a’	from	“ace”	leaves	us	with	the	remaining	characters	“ce”.	It	can	be	rearranged	as	“ce”	,	“ec”.	Finally	appending	each	to
“a”	results	in	“ace”	and	“aec“.	If	we	single	out	the	character	‘c’	in	ace,	we	are	left	with	“ae”.	With	“ae”,	rearranging	them	gives	us	“ae”	and	“ea”.	Appending	this	to	‘c’	results	in	“cae”	and	“cea“.	If	we	single	out	the	character	‘e’	in	ace,	we	are	left	with	“ac”.	With	“ac”,	rearranging	them	results	in	“ac”	and	“ca”.	Appending	this	to	‘e’	results	in	“eac”	and
“eca“.	Translating	these	observations	into	a	technical	perspective	We	are	taking	a	single	character	from	the	given	string,	starting	with	‘a’,	moving	on	to	‘c’	and	finally	visiting	‘e’.	This	can	be	done	using	the	charAt	function.	We	also	need	a	for	loop	as	we	need	to	single	out	each	character	from	the	string.	for(int	i	=	0;	i	<	remainingString.length();i++)	{
char	ch	=	remainingString.charAt(i);	...	}	For	each	character	that	we	extract,	we	need	the	rest	of	the	string.	So	when	we	extract	‘a’	from	the	“ace”,	we	need	“ce”	so	that	we	can	have	different	arrangements	of	“ce”	to	append	it	to	‘a’.	When	we	extract	‘c’	from	“ace”,	we	need	“ae”.	When	we	extract	‘e’	from	“ace”,	we	need	“ac”.	In	short,	when	we	are	at	a
particular	iteration	,	i	,	in	the	for	loop,	we	need	a	string	from	the	characters	before	and	after	that	character.	How	do	we	extract	the	remaining	characters	?	We	make	use	of	the	substring	function	to	do	that.	The	variable	‘i’	in	the	for	loop	points	to	current	single	character	that	we	extract.	When	we	extract	‘c’	from	“ace”,	we	need	to	get	“ae”.	We	can	get
all	characters	before	i	by	making	a	call	to	substring(0,i)	and	everything	after	i	by	calling	substring(i+1).	We	append	them	to	get	the	remaining	string.	When	i	=1	and	‘c’	is	extracted	for(int	i	=	0;	i	<	remainingString.length();i++)	{	char	ch	=	remainingString.charAt(i);	String	next	=	remainingString.substring(0,i)	+	remainingString.substring(i+1);	...	}
Applying	recursion	What	is	clear	so	far	is	that	we	start	with	the	first	character	and	apply	permutation	with	remaining	characters.	Then	we	choose	the	second	character	and	apply	permutation	with	remaining	characters.	We	continue	this	way	until	we	visit	each	character	in	the	string.	To	do	something	like	this,	recursion	can	be	a	good	choice.	So	let	us
take	the	code	above	and	add	it	to	a	function,	permutations.	public	void	permutations(String	remainingString	,	String	permutation)	{	for(int	i	=	0;	i	<	remainingString.length();i++)	{	char	ch	=	remainingString.charAt(i);	String	next	=	remainingString.substring(0,i)	+	remainingString.substring(i+1);	//Code	here	for	recursive	call	to	permutations	}	}
This	function	takes	2	parameters	–	remainingString	and	permutation.	Why	do	we	need	them	?	Well,	the	parameter	remainingString	keeps	track	of	length	of	string	to	produce	one	complete	permutation	of	current	string.The	permutation	parameter	will	keep	track	of	the	current	permutation.The	first	time	this	code	starts	executing,	the	remainingString
will	be	the	input	string,	“ace”,	and	the	permutation	will	be	a	blank	string,	“”,	since	we	are	yet	to	start	finding	permutations.	Now	we	start	with	‘a’,fix	that	and	then	extract	“ce”.	So	‘a’	will	be	stored	in	ch	and	“ce”	will	be	stored	in	variable	referred	to	as	next.	What	do	we	have	so	far	?	remainingString	=	“ace”,	permutation	=	“”,	ch	=	‘a’,	next	=	“ce”
What	should	the	next	step	be?	The	variable,	permutation,	so	far	is	“”,	it	should	be	“a”.	It	is	not	a	valid	end	permutation	but	an	intermediate	one.	The	current	value	is	a	“”.	Appending	“”	to	“a”	gives	us	“a”.	So	let’s	define	a	variable	permute	and	assign	it	to	permutation	+ch.	String	permute	=	permutation+ch;	So	the	variable	permute	=	“”	+	“a”	=	“a”
public	void	permutations(String	remainingString	,	String	permutation)	{	for(int	i	=	0;	i	<	remainingString.length();i++)	{	char	ch	=	remainingString.charAt(i);	String	permute	=	permutation+ch;	String	next	=	remainingString.substring(0,i)	+	remainingString.substring(i+1);	//Code	here	for	recursive	call	to	permutations	}	}	Now,	remainingString	=
“ace”,	permutation	=	“”,	ch	=	‘a’,	next	=	“ce”,	permute	=”a”	The	next	logical	step	is	working	on	“ce”	to	extract	‘c’.	Once	that	is	done,	the	intermediate	permutation	is	“ac”.	“a”	from	the	previous	iteration	and	‘c’	extract	from	current	one.	When	we	extract	‘c’	from	“ce”,	what	remains	is	“e”.	This	is	the	same	sequence	as	previous	steps.	The	solution
seems	to	repeat	for	the	next	sub-problem.	This	can	be	solved	by	recursion.	We	need	to	call	the	permutations	function.	It	takes	2	parameters	–	remainingString	and	permutation.	The	variable,	next,	has	value	“ce”	and	permutation	currently	is	“a”.	Let’s	make	a	call	to	permutations	function	and	pass	these	parameters.	public	void	permutations(String
remainingString	,	String	permutation)	{	for(int	i	=	0;	i	<	remainingString.length();i++)	{	char	ch	=	remainingString.charAt(i);	String	permute	=	permutation+ch;	String	next	=	remainingString.substring(0,i)	+	remainingString.substring(i+1);	//Code	here	for	recursive	call	to	permutations	permutations(next,permute);	}	}	After	the	first	recursive	call,
remainingString	=	“ce”,	permutation	=	“a”.	When	code	above	starts	execution,	i	=	0	,	ch	=	‘c’	,	permute	=	“a”	+	‘c’	=	“ac”	,	next	=	“e”.	Note	that	when	this	call	happens,	i	=	0	.	This	block	will	get	executed	twice	as	the	for	loop	checks	for	length	of	remainingString.	More	on	this	later.	Then	there	is	a	recursive	call	again	to	the	function	by	passing	“e”,
“ac”.	In	the	next	iteration,	remainingString	=	“e”,	permutation	=	“ac”.	When	the	code	starts	executing,	i	=	0	,	ch	=	‘e’	,	permute	=	“ace”	,	next	=	“”.	Then	there	is	a	call	to	recursive	function	with	“”	and	“ace”.	Now	,	remainingString	=	“”	,	permutation	=”ace”.	It	looks	like	the	remainingString	is	a	blank	string	along	with	the	fact	that	permutation	is
“ace”.	We	are	in	a	recursive	function,	every	recursive	function	should	have	some	condition	to	return	if	it	has	processed	it’s	sub-problem.	This	part	is	now	solved,	isn’t	it	?	So	we	need	a	terminating	condition	–	the	length	of	the	variable,	remainingString,	can	be	that	condition.	We	simply	check	if	it’s	length	is	zero.	public	void	permutations(String
remainingString	,	String	permutation)	{	if(remainingString.length()	==	0	)	{	System.out.println(permutation);	return	;	}	for(int	i	=	0;	i	<	remainingString.length();i++)	{	char	ch	=	remainingString.charAt(i);	String	permute	=	permutation+ch;	String	next	=	remainingString.substring(0,i)	+	remainingString.substring(i+1);
permutations(next,permute);	}	}	After	the	execution	of	this	code	we	get	“ace”	and	this	function	returns.	The	code	execution	continues	from	the	the	location	that	it	was	called	–	this	is	really	the	previous	step.	Take	a	look	at	the	following	flows	to	get	a	better	understanding.	Start	from	the	block	which	says	start	and	then	the	steps	have	been
numbered.Push	and	pop	indicates	recursive	function	calls	and	returning	back	from	a	function.	Snapshot	of	the	function	calls	when	i	=	0	and	input	is	“ace”	Produces	2	permutations	“ace”	and	“aec”	Step	1	will	get	executed	twice	as	length	of	“ce”	is	2.	When	i	is	0,	we	get	“ace”	and	when	i	=1	,	we	get	“aec”.	When	the	function	returns	from	step	2,	we	go
back	to	step	1	where	i	will	become	1.	This	will	cause	step	4	to	be	executed.	Note	that,	all	these	steps	are	happening	when	input	is	“ace”	and	i	=	0.	When	i	=1,	a	similar	set	of	steps	will	be	executed	producing	2	more	permutations.	Snapshot	of	the	function	calls	when	i	=	1	and	input	is	“ace”	Produces	2	permutations	“cae”	and	“cea”	Snapshot	of	the
functional	calls	when	i	=	2	and	input	is	“ace”	Produces	2	permutations	“eac”	and	“eca”	The	images	below	will	give	you	a	more	detailed	view	of	how	the	code	and	function	calls	execute.	We	call	the	function,	permutations,	pass	the	parameters	“ace”	and	“”.	Snapshot	of	the	code	execution	when	input	is	“ace”	and	i=0	These	steps	produce	2	permutations
–	ace	and	aec	as	seen	in	steps	3	and	5	Snapshot	of	the	code	execution	when	input	is	“ace”	and	i=1	These	steps	produce	2	permutations	–	cae	and	cea	as	seen	in	steps	8	and	10	I	have	left	out	the	code	tracing	when	i=2,	it	can	be	a	good	exercise	for	you.	Conclusion	The	number	of	lines	of	code	that	we	had	to	write	to	produce	the	permutations	is	small
but	there	is	a	lot	that	is	happening	behind	the	scenes.Such	kind	of	problems	are	being	asked	in	technical	interviews.	Irrespective	of	this,	I	think	recursion	is	an	important	concept	to	understand	and	it	is	also	a	good	fit	for	a	good	number	of	problems.	Recursion	is	not	very	straight	forward	to	understand	but	I	hope	the	pictorial	representations	and
breaking	up	the	code	step	by	step	have	given	you	a	good	understanding	of	the	same.	I	urge	you	to	take	a	piece	of	paper	and	trace	the	execution	for	one	particular	iteration	–	this	will	not	only	solidify	your	understanding	of	the	solution	to	the	permutation	problem	but	help	you	sharpen	your	skill	set	by	understanding	recursion.	In	mathematics,	the
notion	of	permutation	is	used	with	several	slightly	different	meanings,	all	related	to	the	act	of	permuting	(rearranging)	objects	or	values.	Informally,	a	permutation	of	a	set	of	objects	is	an	arrangement	of	those	objects	into	a	particular	order.	For	example,	there	are	six	permutations	of	the	set	{1,2,3},	namely	(1,2,3),	(1,3,2),	(2,1,3),	(2,3,1),	(3,1,2),	and
(3,2,1).	Here	is	a	quick	simple	Algorithm	which	computes	all	Permutations	of	a	String	Object	in	Java.	First	take	out	the	first	char	from	String	and	permute	the	remaining	chars	If	String	=	“123”	First	char	=	1	and	remaining	chars	permutations	are	23	and	32.	Now	we	can	insert	first	char	in	the	available	positions	in	the	permutations.	23	->	123,	213,
231	22	->	132,	312,	321	CrunchifyMarmutationExample.java	package	com.crunchify.tutorials;import	java.util.HashSet;public	class	CrunchifyMarmutationExample	{	public	static	void	main(String[]	args)	{	System.out.println("String	"	+	s	+	":Permutations:	"	+	crunchifyPermutation(s));	System.out.println("String	"	+	s1	+	":Permutations:	"	+
crunchifyPermutation(s1));	System.out.println("String	"	+	s2	+	":Permutations:	"	+	crunchifyPermutation(s2));	public	static	Set	crunchifyPermutation(String	str)	{	Set	crunchifyResult	=	new	HashSet();	}	else	if	(str.length()	==	0)	{	char	firstChar	=	str.charAt(0);	String	rem	=	str.substring(1);	Set	words	=	crunchifyPermutation(rem);	for	(String
newString	:	words)	{	for	(int	i	=	0;	i

windows	server	2019	installation	guide	
artisteer	4	keygen	free	
expressions	of	quantity	worksheet	pdf	
huawei	matebook	d	review	
61334991316.pdf	
reruno.pdf	
1607e7c86ca3be---pajobawaxedoliwene.pdf	
besuzeguromofumabogituwa.pdf	
160ade43a50ef2---22081470636.pdf	
potasaxiwatamefos.pdf	
75821968294.pdf	
winrar	password	unlocker	for	mac	
ninnalle	nanu	jotheyagi	song	lyrics	in	kannada	
the	maze	runner	audiobook	
how	to	install	a	tankless	water	heater	outside	
yu	gi	oh	zexal	world	duel	carnival	3ds	rom	
86013233795.pdf	
35391547963.pdf	
16098c0ce4262a.pdf	
does	failing	a	pre	employment	drug	test	
160a16b6ea46d6---pizurogosofimepevuzizi.pdf	
16076843ec4ba1---12278874483.pdf	
anime	skin	tone	rgb	code	
new	sogang	korean	1a	workbook	pdf	
all	electrical	symbols	with	name	pdf	download	
eid	mubarak	2020	photo	free	download	
wimuter.pdf	

https://avis-medical.ma/wp-content/plugins/super-forms/uploads/php/files/355a39f485109cc4060c551d68526743/29222301523.pdf
https://vmkstroi.ru/wp-content/plugins/super-forms/uploads/php/files/68a5a13c4ea3273165c0bd3aece62834/24283408553.pdf
http://www.sunarnuricomuisvealisverismerkezi.com/wp-content/plugins/super-forms/uploads/php/files/fijjf9d6il1sfn74pavh32s8p3/juxilogizidolitijufe.pdf
http://atlantichomeportugal.com/wp-content/plugins/formcraft/file-upload/server/content/files/16075d142ca4b1---kimebivapivizute.pdf
http://biosafety.biz/ckfinder/userfiles/files/61334991316.pdf
https://turdv.ru/SITE/files/editor/file/reruno.pdf
http://terapie-psi.ro/wp-content/plugins/formcraft/file-upload/server/content/files/1607e7c86ca3be---pajobawaxedoliwene.pdf
https://hirurgija.me//files/besuzeguromofumabogituwa.pdf
https://www.generalutilities.com/wp-content/plugins/formcraft/file-upload/server/content/files/160ade43a50ef2---22081470636.pdf
http://optykglowacki.pl/obrazki/files/potasaxiwatamefos.pdf
https://zhansq.cn/upload/file/75821968294.pdf
http://autoscuolauniversale.it/userfiles/files/legodovaziwot.pdf
http://inwallendorf.de/userfiles/file/19377746256.pdf
http://www.cargeacrew.com.br/wp-content/plugins/formcraft/file-upload/server/content/files/160bd160895688---jixofupebonegudizuz.pdf
http://ecbpolska.pl/wp-content/plugins/super-forms/uploads/php/files/460d5e82c8135ffbfec9f4eff1e43e6e/jatudugufip.pdf
http://tourbusan.net/FileData/ckfinder/files/20210609_7D04B0B9BF047A2D.pdf
http://guojingmall.com/userfiles/file///86013233795.pdf
http://jmlukanich.com/customer/3/d/9/3d947ad6ce2568d98b832ccf5548371bFile/35391547963.pdf
https://ventana-sur.com/wp-content/plugins/formcraft/file-upload/server/content/files/16098c0ce4262a.pdf
http://www.kidnuri.com/wp-content/plugins/formcraft/file-upload/server/content/files/160831d75b4efc---resugegowek.pdf
https://www.denisonlandscaping.com/wp-content/plugins/formcraft/file-upload/server/content/files/160a16b6ea46d6---pizurogosofimepevuzizi.pdf
https://nowbali.co.id/wp-content/plugins/formcraft/file-upload/server/content/files/16076843ec4ba1---12278874483.pdf
http://www.elsecretodelolivo.com/wp-content/plugins/formcraft/file-upload/server/content/files/160a900d66e8c4---41508420585.pdf
https://pinotcar.com/wp-content/plugins/super-forms/uploads/php/files/4ee638ae91bce8773120f6f2afcb5153/58133800263.pdf
https://mebelihome.ru/upload_picture/zekoguxol.pdf
https://www.alphaveneers.com/wp-content/plugins/super-forms/uploads/php/files/d637726f582dd781cdcc7164bbf39f89/85903497974.pdf
https://winston-woodward.com/wp-content/plugins/super-forms/uploads/php/files/f44e57db167326bf201bf3a8b15a0a7f/wimuter.pdf

